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Abstract

The most promising class of statistical models for expressing structural properties of social
networks is the class of Exponential Random Graph Models (ERGMs), also known as p∗

models. The strong point of these models is that they can represent structural tendencies,
such as transitivity, that define complicated dependence patterns not easily modeled by more
basic probability models. Recently, MCMC algorithms have been developed which produce
approximate Maximum Likelihood estimators. Applying these models in their traditional
specification to observed network data often has led to problems, however, which can be
traced back to the fact that important parts of the parameter space correspond to nearly
degenerate distributions, which may lead to convergence problems and a poor fit to empirical
data.

This paper proposes new specifications of the exponential random graph model. These
specifications represent structural properties such as transitivity and heterogeneity of degrees
by more complicated graph statistics than the traditional star and triangle counts. Three
kinds of statistic are proposed: geometrically weighted degree distributions, alternating k-
triangles, and alternating independent two-paths. Examples are presented both of modeling
graphs and digraphs, in which the new specifications lead to much better results than the
earlier existing specifications of the ERGM. It is concluded that the new specifications in-
crease the range and applicability of the ERGM as a tool for the statistical analysis of social
networks.

KEY WORDS: Statistical modeling, Social networks, Graphs, Transitivity, Clustering,
Maximum likelihood, MCMC, p∗ model.



1 Introduction

Transitivity of relations, expressed for friendship by the adage, ‘friends of my friends are

my friends’, has resisted attempts to being expressed in network models in such a way as

to be amenable for statistical inference. Davis (1970) found in an extensive empirical study

on relations of positive interpersonal affect that transitivity is the outstanding feature that

differentiates observed data from a pattern of random ties. Transitivity is expressed by triad

closure: if i and j are tied, and so are j and h, then closure of the triad i, j, h would mean that

also i and h are tied. (When the condition holds that the pairs (i, j) as well as (j, h) are tied,

which forms a “two-star” or “two-path” in the terminology used below, the triad is called

potentially transitive.) The preceding description is for non-directed relations, and applies in

modified form to directed relations. Davis found that triads in data on positive interpersonal

affect tend to be transitively closed much more often than could be accounted for by chance;

and this consistently over a large collection of datasets. Of course in empirically observed

social networks far from all potentially transitive triads are transitive indeed, so the tendency

towards transitivity is stochastic rather than deterministic.

Davis’s finding was based on comparing data with a non-transitive null model. More

sophisticated methods along these lines were developed by Holland and Leinhardt (1976),

but they remained restricted to the testing of structural characteristics such as transitivity

against null models expressing randomness or, in the case of directed graphs, expressing

only the tendency toward reciprocation of ties. A next step in modeling is to formulate a

stochastic model for networks that expresses transitivity and could be used for statistical

analysis of data. Such models have to include one or more parameters indicating the strength

of transitivity, and these parameters have to be estimated and tested, controlling for other

effects – such as covariate and node-level effects. Then, of course, it would be interesting to

model other network effects in addition to transitivity.

The importance of controlling for node-level effects, such as actor attributes, arises be-

cause there are several distinct localized social processes that may give rise to transitivity.

First, social ties may “self-organize” to produce triangular structures, as indicated by the

process noted above, that the friends of my friends are likely to become my friends (i.e.,

a structural balance effect). In other words, the presence of certain ties may induce other

ties to form, in this case with the triangulation occurring explicitly as the result of a social

process involving three people. Alternatively, certain actors may be very popular, and hence

attract ties, including from other popular actors. This process may result in a core-periphery

network structure with popular actors in the core. Many triangles are likely to occur in the

core as an outcome of tie formation based on popularity. Both of these triangulation effects
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are structural in outcome, but one represents an explicit social transitivity process whereas

the other is the outcome of a popularity process. In the second case, the number of triangles

could be accounted for on the basis of the distribution of the actors’ degrees without refer-

ring to transitivity. In a separate third possibility, however, ties may arise because actors

select partners based on attribute homophily (as reviewed in McPherson, Smith-Lovin, and

Cook, 2001), or some other process of social selection, in which case triangles of similar

actors may be a side-product of homophilous dyadic selection processes. An often impor-

tant question is, once accounting for homophily, whether there are still structural processes

present. This would indicate the presence of organizing principles within the network that

go beyond dyadic selection. In that case, can we determine whether this self-organization

is based within triads, or whether triangulation is the outcome of some other organizing

principle? Given the diversity of processes that may lead to transitivity, the complexity of

statistical models for transitivity is not surprising.

It can be concluded that transitivity is widely observed in networks empirically. For a full

understanding of the processes that give rise to and sustain the network, it is crucial to model

transitivity adequately, particularly in the presence of – and controlling for – attributes. In

a wide-ranging review, Newman (2003) deplores the inadequacy of existing general network

models in this regard. When the requirement is made that the model is tractable for the

statistical analysis of empirical data, exponential random graph (or p∗) models offer the

most promising framework within which such models can be developed. These models are

described in the next section; it will be explained, however, that current specifications of

these models often do not provide adequate accounts of empirical data. It is the aim of

this paper to present some new specifications for exponential random graph models that

considerably extend our capacity to model observed social networks.

1.1 Exponential random graph models

The following terms and notation will be used. A graph is the mathematical representation

of a relation, or a binary network. The number of nodes in the graph is denoted by n. The

random variable Yij indicates whether there exists a tie between nodes i and j (Yij = 1) or

not (Yij = 0). We use the convention that there are no self-ties, i.e., Yii = 0 for all i. A

random graph is represented by its adjacency matrix Y with elements Yij. Graphs are by

default non-directed (i.e., Yij = Yji holds for all i, j), but much attention is given also to

directed relations, represented by directed graphs, for which Yij indicates the existence of a

tie from i to j, and where Yij is allowed to differ from Yji. Denote the set of all adjacency

matrices by Y . The notational convention is followed where random variables are denoted

by capitals and their outcomes by small letters. We do not consider non-binary ties here,
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although they may be considered within this framework (Snijders and Kenny 1999; Hoff

2003).

A stochastic model expressing transitivity was proposed by Frank and Strauss (1986).

They defined that a probability distribution for a graph is a Markov graph if the number

of nodes is fixed at n and possible edges between disjoint pairs of nodes are independent

conditional on the rest of the graph. Formulated less compactly, for the case of an undirected

graph: if i, j, u, v are four distinct nodes, the Markov property requires that Yij and Yuv

are independent, conditional on all other variables Yts. This is an appealing but quite

restrictive definition, generalizing the idea of Markovian dependence for random processes

with a linearly ordered time parameter and for spatial processes on a lattice (Besag, 1974).

The basic idea is that two possible social ties are dependent only if a common actor is involved

in both. Frank and Strauss obtained an important characterization of Markov graphs. They

used the assumption of permutation invariance, stating that the distribution remains the

same when the nodes are relabeled. With this assumption and using the Hammersley-

Clifford theorem (Besag, 1974) they proved that a random undirected graph is a Markov

graph if and only if the probability distribution can be written as

Pθ{Y = y} = exp

(
n−1∑
k=1

θk Sk(y) + τ T (y) − ψ(θ, τ)

)
y ∈ Y (1)

where the statistics Sk and T are defined by

S1(y) =
∑

1≤i<j≤n yij number of edges

Sk(y) =
∑

1≤i≤n

(
yi+

k

)
number of k-stars (k ≥ 2)

T (y) =
∑

1≤i<j<h≤n yij yih yjh number of triangles,

(2)

the greek letters θk and τ indicate parameters of the distribution, and ψ(θ, τ) is a normalizing

constant ensuring that the probabilities sum to 1. Replacing an index by the + sign denotes

summation over the index, so yi+ is the degree of node i. A configuration (i, j1, . . . , jk) is

called a k-star if i is tied to each of j1, j2, up to jk. For all k, the number of k-stars in which

node i is involved, is given by
(

yi+

k

)
. An edge is a one-star, so S1(y) is also equal to the

number of one-stars. Some of these configurations are pictured in Figure 1.

It may be noted that this family of distributions contains for θ2 = . . . = θn−1 = τ = 0

the trivial case of the Bernoulli graph, i.e., the purely random graph in which all edges occur

independently and have the same probability eθ1/(1 + eθ1).

Frank and Strauss (1986) elaborated mainly the three-parameter model where θ3 = . . . =

θn−1 = 0, for which the probability distribution depends on the number of edges, the number

of two-stars, and the number of transitive triads. They observed that parameter estimation
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Figure 1: Some configurations for undirected graphs

for this model is difficult and presented a simulation-based method for the maximum like-

lihood estimation of any one of the three parameters in this model, given that the other

two are fixed at 0, which is only of theoretical value. They also proposed the so-called

pseudo-likelihood estimation method for estimating the complete vector of parameters. This

is based on maximizing the pseudo-loglikelihood defined by

`(θ) =
∑
i<j

ln
(
Pθ {Yij = yij | Yuv = yuv for all u < v, (u, v) 6= (i, j)}

)
. (3)

This method can be carried out relatively easily, as it is algorithmically formally equivalent to

a logistic regression. However the properties of pseudo-loglikelihood estimators have not been

adequately established for social networks. In analogous situations in spatial statistics the

maximum pseudo-loglikelihood estimator has been observed to overestimate the dependence

in situations where the dependence is strong and to perform adequately when the dependence

is weak (Geyer and Thompson 1992). For most social networks the dependence is strong

and the maximum pseudo-loglikelihood is suspect.

The paper by Frank and Strauss was seminal and led to many papers published in the

1990’s. In the first place, Frank (1991) and Wasserman and Pattison (1996) proposed to use

a model of this form, both for undirected and for directed graphs, with arbitrary statistics

u(y) in the exponent. This yields the probability functions

Pθ{Y = y} = exp
(
θ′u(y)− ψ(θ)

)
y ∈ Y (4)

where y is the adjacency matrix of a graph or digraph and u(y) is any vector of statistics of

the graph. Wasserman and Pattison called this family of distributions the p∗ model. As this

is an example of what statisticians call an exponential family of distributions (e.g., Lehmann,

1983) with u(Y ) as the sufficient statistic, the family also is called an exponential random

graph model (ERGM).
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Various extensions of this model to valued and multivariate relations were published

(among others, Pattison and Wasserman, 1999; Robins, Pattison, and Wasserman, 1999),

focusing mainly on subgraph counts as the statistics included in u(y), motivated by the

Hammersley-Clifford theorem (Besag, 1974). To estimate the parameters, the pseudo-

likelihood method continued to be used, although it was acknowledged that the usual chi-

squared likelihood ratio tests were not warranted here, and there remained uncertainty about

the qualities and meaning of the pseudo-likelihood estimator. The concept of Markovian de-

pendence as defined by Frank and Strauss was extended by Pattison and Robins (2002) to

partial conditional independence, meaning that whether edges Yij and Yuv are independent

conditionally on the rest of the graph depends not only on whether they share nodes, but

also on the pattern of ties in the rest of the graph. This concept will be used later in this

paper.

Recent developments in general statistical theory suggested Markov chain Monte Carlo

(MCMC) procedures both for obtaining simulated draws from ERGMs, and for parameter

estimation. An MCMC algorithm for maximum likelihood estimation of the parameters in

ERGMs was proposed by Snijders (2002). This method uses a general property of maximum

likelihood (ML) estimates in exponential families of distributions such as (4), viz., that the

ML estimate is the value θ̂ for which the expected value of the statistics u(Y ) is precisely

equal to the observed value u(y):

Eθ̂u(Y ) = u(y) . (5)

In other words, the parameter estimates require the model to reproduce exactly the observed

values of the sufficient statistics u(y).

The MCMC simulation procedure, however, brought to light serious problems in the

definition of the model given by (1) and (2). These were discussed by Snijders (2002),

Handcock (2002a,2002b, 2003), and Robins, Pattison and Woolcock (in press), and go back

to a type of model degeneracy discussed in a more general sense by Strauss (1986). A

probability distribution can be termed degenerate if it is concentrated on a small subset of the

sample space, and for exponential families this term is used more generally for distributions

defined by parameters on the boundary of the parameter space; near degeneracy here is

defined by the distribution placing disproportionate probability on a small set of outcomes

(Handcock 2003). A simple instance of the basic problem with these models occurs as follows.

In models with only edge and transitivity parameters, for sufficiently positive values of the

transitivity parameter τ , and moderate values of the other parameters, the exponent in (1) is

extremely large if y is the complete graph (where all edges are present, i.e., yij = 1 for all i, j)

and much smaller for all other graphs which are not almost complete. This difference is so
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extreme that for positive values of τ –except for quite small positive values–, the probability

is almost 1 that the density of the random graph Y is very close to 1. On the other hand,

if the edge parameter is sufficiently negative for a fixed positive transitivity parameter, the

model produces only low density graphs. So for a fixed positive transitivity parameter, as the

edge parameter becomes more negative there is a point at which the simulation procedure

changes dramatically from producing only complete graphs to only low density graphs. This

model has been studied asymptotically by Jonasson (1999a,b) and Handcock (2002a). If τ

is non-negative, Jonasson shows that asymptotically the model produces only three types

of distributions: complete graphs, Bernoulli graphs, or mixtures of complete and Bernoulli

graphs. These are not interesting in terms of transitivity. This phenomenon is similar to the

phase transitions known for the Ising and some other models (e.g., Besag, 1974; Newman

and Barkema, 1999). Some examples for more complex models are given in Sections 4 and 5

below. About this phase transition there is a small region of the parameter space where both

complete and low density graphs are possible; graphs with a low or intermediate density and

an amount of triangles that is high, given the density, are hardly likely under any parameter

value, even for rather small values of n.

One potential way out of these problems is to condition on the total number of ties, i.e., to

consider only graphs having the observed number of edges. However, Snijders (2002) showed

that although conditioning on the total number of ties does sometimes lead to successful

parameter estimation, the mentioned problems still occur in more subtle forms, and there

still are many data sets for which satisfactory parameter estimates cannot be obtained. Note,

in addition, that models conditional on the number of ties are also ERGMs on the reduced

sample space of graphs. Hence the problems considered here apply on that space.

The question, then, is to what extent model (1) when applied to empirical data produces

parameter estimates that are in, or too close to the nearly degenerate area, resulting in the

impossibility of obtaining satisfactory parameter estimates. A next question is, whether a

model such as (1) will provide a good fit. Our overall experience is that, although sometimes

it is possible to attain parameter estimates that work well, even though they are close to the

nearly degenerate area, there are many empirically observed graphs having a moderate or

large degree of transitivity and a low to moderate density, which cannot be well represented

by a model such as (1), either because no satisfactory parameter estimates can be obtained or

because the fitted model does not give a satisfactory representation of the observed network.

This model offers little medium ground between a very slight tendency toward transitivity,

and a distribution that is for all practical purposes concentrated on the complete graph or

on more complex ‘crystalline’ structures as demonstrated in Robins, Pattison and Woolcock

(in press).
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The present paper aims to extend the scope of modeling social networks using ERGMs

by representing transitivity not only by the number of transitive triads, but in other ways

that are in accordance with the concept of partial conditional independence of Pattison

and Robins (2002). We have couched this introduction in terms of the important issue of

transitivity, but the modeling of transitivity also requires attention to star parameters, or

equivalently, aspects of the degree distribution. New representations for transitivity and the

degree distribution in the case of undirected graphs are presented in Section 3, preceded by

a further explanation of simulation methods for the ERGM in Section 2. After the technical

details in Section 3, we present in Section 4 some new modeling possibilities made possible by

these specifications, based on simulations, showing that these new specifications push back

some of the problems of degeneracy discussed above. In Section 5 the new models are applied

to data sets that hitherto have not been amenable to convergent parameter estimation for

the ERGM. A similar development for directed relations is given in Section 6.

2 Gibbs Sampling and Change Statistics

Exponential random graph distributions can be simulated, and the parameters can be es-

timated, by Markov chain Monte Carlo (MCMC) methods as discussed by Snijders (2002)

and Handcock (2003). This is implemented in the computer programs SIENA (Snijders

and Huisman, 2003) and ergm (Handcock et al. 2004). A straightforward way to generate

random samples from such distributions is to use the Gibbs sampler (Geman and Geman,

1983): cycle through the set of all random variables Yij (i 6= j) and simulate each in turn

according to the conditional distribution

Pθ {Yij = yij | Yuv = yuv for all (u, v) 6= (i, j)} . (6)

Continuing this procedure a large number of times defines a Markov chain on the space

of all adjacency matrices which converges to the desired distribution. Instead of cycling

systematically through all elements of the adjacency matrix, another possibility is to select

one pair (i, j) randomly under the condition i 6= j, and then generate a random value of Yij

according to the conditional distribution (6); this procedure is called mixing (Tierney, 1994).

Instead of Gibbs steps for stochastically updating the values Yij, another possibility is to

use Metropolis-Hastings steps. These and some other procedures are discussed in Snijders

(2002).

For the exponential model (4), the conditional distributions (6) can be obtained as follows,

as discussed by Frank (1991) and Wasserman and Pattison (1996). For a given adjacency

matrix y, define by y(ij1) and y(ij0) , respectively, the adjacency matrices obtained by defining
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the (i, j) element as y
(ij1)
ij = 1 and y

(ij0)
ij = 0 and leaving all other elements as they are in y,

and define the change statistic with (i, j) element by

zij = u
(
y(ij1)

)
− u

(
y(ij0)

)
. (7)

The conditional distribution (6) is formally given by the logistic regression with the change

statistics in the role of independent variables,

logit
(
Pθ {Yij = 1 | Yuv = yuv for all (u, v) 6= (i, j)}

)
= θ′zij . (8)

This is also the form used in the pseudo-likelihood estimation procedure, cf. (3).

The change statistic for a particular parameter has an interpretation that is helpful in

understanding the implications of the model. When multiplied by the parameter value, it

represents the change in log-odds for the presence of the tie due to the effect in question.

For instance, in model (1), if an edge being present on (i, j) would thereby form three new

triangles, then according to the model the log-odds of that tie being observed would increase

by 3τ due to the transitivity effect.

The problems with the exponential random graph distribution discussed in the preceding

section reside in the fact that for specifications of the statistic u(y) containing the number

of k-stars for k ≥ 2 or the number of transitive triads, if these statistics have positive

parameters, changing some value yij can lead to large increases in the change statistic for

other variables yuv. The change in yuv suggested by these change statistics will even further

increase values of other change statistics, and so on, leading to an avalanche of changes

which ultimately leads to a complete graph from which the probability of escape is negligible

– hence the near degeneracy. Note that this is not intrinsically an algorithmic issue – the

algorithm reflects the full-conditional probability distributions of the model. The cause is

that the underlying model places significant mass on complete (or near complete) graphs.

For a theoretical analysis of these issues see Handcock (2003).

An example is the specification (1), (2) of the Markov model for undirected graphs with

edge, two-star, and triangle parameters. The change statistic is z1ij

z2ij

z3ij

 =

 1
ỹi+(i, j) + ỹj+(i, j)

L2ij

 (9)

where ỹ(i, j) denotes the adjacency matrix obtained from y by letting ỹij(i, j) = 0 and leaving

all other yuv unaffected, and ỹi+(i, j) and ỹj+(i, j) are for this reduced graph the degrees of

nodes i and j; while L2ij is the number of two-paths connecting i and j,

L2ij =
∑
h 6=i,j

yih yhj . (10)
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All these change statistics are elementwise non-decreasing functions of the adjacency matrix

y. Therefore, if parameters θ2 and τ are positive, increasing some element yij from 0 to 1 will

increase many of the change statistics and thereby the logits (8), which then will increase

the odds that a next variable yuv will also obtain the value 1, which further increases many

of the change statistics, etc., leading to the avalanche effect. Note that the maximum value

of z2 is 2(n− 2) and the maximum of z3 is (n− 2), both of which increase indefinitely as the

number of nodes of the graph increases, and this large maximum value is one of the reasons

for the problematic behavior of this model. Note that it is tempting to reduce this effect

by choosing the coefficient of the edges strongly negative. However, this forces the model

toward the empty graph. If the two forces are balanced the combined effect is a mixture of

(near) empty and (near) full graphs with a paucity of the intermediate graphs that are closer

to realistic observations. If the Markov random graph model contains a balanced mixture

of positive and negative star parameter values, this avalanche effect can be smaller or even

absent. This property is exploited in the following section.

3 Proposals for New Specifications for Star and Tran-

sitivity Effects

We begin this section by considering proposals that will model all k-star parameters as a

function of single parameter. Since the number of stars is a function of the degrees, this

is equivalent to modeling the degree distribution. Suitable functions will ensure that the

avalanche effect referred to in the previous section will not occur, or at least be constrained.

These steps can be taken within the framework of the Markov dependence assumption.

We then turn to transitivity, which is more important from a theoretical point of view,

but which is treated after the models for k-stars and the degree distribution because of the

greater complexity of the graph structures involved. The model for transitivity uses a new

graph configuration that we term a k-triangle. We model k-triangles in similar ways to the

stars, in that all k-triangle parameters are modeled as a function of a single parameter. But

these new parameters are not encompassed by Markov dependence, and we need to relax the

dependence assumption to partial conditional dependence. The discussion is principally for

undirected graphs; the case of directed graphs is presented more briefly in a later section.

3.1 Geometrically weighted degrees and related functions

Expression (2) shows that the exponent of a Markov graph model can contain an arbitrary

linear function of the k-star counts Sk, k = 1, . . . , n − 1. These counts Sk are given by

binomial coefficients, which are independent polynomials of the node degrees yi+, Sk being

9



a polynomial of degree k. But it is known that every function of the numbers 1 through

n − 1 can be expressed as a linear combination of polynomials of degrees 1, . . . , n − 1.

Therefore, any function of the degree distribution (i.e., any function of the degrees that does

not depend on the node labels) can be represented as a linear combination of the k-star

counts S1, . . . , Sn−1. In other words, we have complete liberty to include any function of

the degree distribution in the exponent of (4), and still remain within the family of Markov

graphs. The only requirement therefore will be to provide a satisfactory fit to the empirical

data at hand with a small number of parameters.

Saturated models for the degree sequence were discussed by Snijders (1991) and by Snij-

ders and van Duijn (2002). These models have the virtue of giving a perfect fit to the

degree distribution and to control perfectly for the degrees when estimating and testing

other parameters, but at the expense of an exceedingly high number of parameters and the

impossibility to do more with the degree distribution than describe it. Therefore we do not

discuss these models here.

Geometrically weighted degree counts

A specification that has been traditional since the original paper by Frank and Strauss

(1986), is to use the k-star counts themselves. Such subgraph counts, however, if they have

positive weights θk in the exponent in (4), are precisely among the villains responsible for

the degeneracy that has been plaguing ERGMs, as noted above. One primary difficulty is

that the model places high probability on graphs with large degrees. A natural solution is

to use a statistic that places decreasing weights on the higher degrees.

An elegant way is to use degree counts with geometrically decreasing weights, as in the

definition

u(d)
α (y) =

n−1∑
k=0

e−αkdk(y) =
n∑

i=1

e−αyi+ , (11)

where dk(y) is the number of nodes with degree k and α > 0 controls the geometric rate of

decrease in the weights. We refer to α as the degree weighting parameter. For large values

of α the contribution of the higher degree nodes is greatly decreased. As α→ 0 the statistic

places increasing weight on the low degree graphs. This model is clearly a sub-class of the

model (4) where the vector of statistics is u(y) = d(y) ≡ {d0(y), . . . , dn−1(y)} but with a

parametric constraint on the natural parameters

θk = e−αk k = 1, . . . , n− 1 , (12)

that may be called the geometrically decreasing degree distribution assumption. This model

is hence a curved exponential family (Efron 1975). The statistic (11) will be called the

geometrically weighted degrees with parameter α.
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As the degree distribution is a one-to-one function of the number of k-stars, some addi-

tional insight can be gained by considering the equivalent model in terms of k-stars. Define

u
(s)
λ (y) = S2 −

S3

λ
+
S4

λ2
− ... + (−1)n−2 Sn−1

λn−3

=
n−1∑
k=2

(−1)k Sk

λk−2
. (13)

Note that the weights have alternating signs, so that positive weights of some k-star counts

are balanced by negative weights of other k-star counts. In this expression, due to the

alternating signs, the contribution from extra k-stars is kept in check by the contribution

from extra (k + 1)-stars. Using expression (2) for the number of k-stars and the binomial

theorem, we obtain that

u
(s)
λ (y) = λ2u(d)

α (y) + 2λS1 − nλ2 (14)

for λ = eα/(eα − 1) ≥ 1; the parameters α and λ are decreasing functions of one another.

This shows that the two statistics form the same model in the presence of an edges or 1-star

term. This model is a curved exponential family based on (1) but with additional constraints

on the star parameters, i.e.

θk = −θk−1/λ , (15)

This is equivalent to the geometrically decreasing degree distribution assumption and can,

alternatively, be called the geometric alternating k-star assumption. Statistic (13) will be

called an alternating k-star with parameter λ.

As α→∞, it follows that λ→ 1, and (11) approaches

u(d)
∞ (y) = d0(y) . (16)

Thus, the boundary case α = ∞ (λ = 1) implies that the number of isolated nodes is

modeled distinctly from other terms in the model. This can be meaningful for two reasons.

In the first place, social processes leading to the isolation of some actors in a group may be

quite different from the social processes that determine which ties the non-isolated actors

have. Second, it is not uncommon that isolated actors are perceived as not being part of

the network, and are therefore left out of the data analysis. This is usually unfortunate

practice. From a dynamic perspective (and our ultimate goal is to be able to express models

dynamically), isolated actors may become connected and other actors may become isolated.

To exclude isolated actors in a single network study is to make the implausible presupposition

that such effects are not present.

11



The associated change statistic is

zij = −
(
1− e−α

) (
e−αỹi+ + e−αỹj+

)
(17)

where ỹ = ỹ(i, j) is the reduced graph as defined above. This change statistic is an elemen-

twise non-decreasing function of the adjacency matrix, but the change becomes smaller as

the degrees ỹi+ become larger, and for α > 0 the change statistic is negative and bounded

below by 2(e−α− 1). Thus, according to the criterion in Handcock (2003), a full-conditional

MCMC for this model will mix close to uniformly. This should help protect such the model

from the inferential degeneracy that has hindered unconstrained models.

As discussed above, the change statistic aids interpretation. If the parameter value is

positive, then we see that the conditional log-odds of a tie on (i, j) is greater among high-

degree actors. In a loose sense, this expresses a version of preferential attachment (Albert

and Barabási, 2002) with ties from low degree to high degree actors being more probable

than ties among low degree actors. However preference for high degree actors is not linear

in degree: the marginal gain in probability for connections to increasingly higher degree

partners is geometrically decreasing with degree.

For instance, if α = ln(2) (i.e., λ = 2) in equation (17), for a fixed degree of i, a connection

to a partner j1 who has two other partners is more probable than a connection to j2 with

only one other partner, the difference in the change statistics being 0.25. But if j1 and j2

have degrees 5 and 6 respectively (from their ties to others than i), the difference in the

change statistics is less than 0.02. So, nodes with degree 5 and higher are treated almost

equivalently. Given these two effects – a preference for connection to high degree nodes, and

little differentiation among high degree nodes beyond a certain point, we expect to see two

outcomes from models with this specification compared to Bernoulli graphs: a tendency for

somewhat higher degree nodes, and a tendency for a core-periphery structure.

Other functions of degrees

Other functions of the node degrees could also be considered. It has been argued recently

(for an overview see Albert and Barabási, 2002) that for many phenomena degree frequencies

tend to 0 more slowly than exponential functions, e.g., as a negative power of the degrees.

This suggests sums of reciprocals of degrees, or higher negative powers of degrees, instead

of exponential functions such as (14). An alternative specification of a slowly decreasing

function which exploits the fact that factorials are recurrent in the combinatorial properties

of graphs and which is in line with recent applications of the Yule distribution to degree

distributions (see Handcock and Jones, 2004), is a sum of ascending factorials of degrees,

u(y) =
n∑

i=1

1

(yi+ + c)r

(18)
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where (d)r for integers d is Pochhammer’s symbol denoting the rising factorial,

(d)r = d(d+ 1) . . . (d+ r − 1) ,

and the parameters c and r are natural numbers (1, 2, ...). The associated change statistic

is

zij(y) =
−r

(ỹi+ + c)r+1

+
−r

(ỹ+j + c)r+1

. (19)

Suppose, for instance, r = c = 1 with a positive parameter value. Then the change

statistic multiplied by the parameter is a negative multiple of the degrees raised to the

power −1. In this case, the general interpretation is similar to the previous case, but here

the effect of a node of degree 4 is about twice that of a node of degree 10, and the effects for

higher degree nodes will be more strongly differentiated (given adequate data).

The choice between this statistic and (13), and the choice of the parameters α or λ, c,

and r, will depend on considerations of fit to the observed network. Since these statistics

are linearly independent for different parameter values, several of them could in principle be

included in the model simultaneously (although this will sometimes lead to collinearity-type

problems and change the interpretation of the parameters).

3.2 Modeling transitivity by alternating k-triangles

The issues of degeneracy discussed above suggest that in many empirical circumstances the

Markov random graph model of Frank and Strauss (1986) is too restrictive. Our experience

in fitting data suggests that problems particularly occur with Markov models when the

observed network includes not just triangles but larger “clique-like” structures that are not

complete but nevertheless contain many triangles. Each of the three processes discussed

in the introduction are likely to result in networks with such denser “clumps”. These are

indeed the subject of much attention in network analysis (cohesive subset techniques), and

the transitivity parameter in Markov models (and perhaps the transitivity concept more

generally) is in part a surrogate to examine such clique-like sections of the network because

the triangle is the simplest clique that is not just a tie. But the linearity of the triangle count

within the exponential is a source of the near-degeneracy problem in Markov models, when

observed incomplete cliques are somewhat large and hence contain many triangles. What

is needed to capture these ‘clique-ish’ structures is a transitivity-like concept that expresses

triangulation also within subsets of nodes larger than three, and with a statistic that is not

linear in the triangle count. Such a concept is proposed in this section.

From the problems associated with degeneracy, given the equivalence between the Markov

conditional independence assumption and model (1), we draw two conclusions: (A) edges
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that do not share a tie may still be conditionally dependent (i.e., the Markov dependence

assumption may be too restrictive); (B) with regard to transitivity, the existence of a tie

between two social actors often will not depend simply on the total number of transitive

triangles to which this tie would contribute: i.e., the representation of transitivity by the

total number of triangles often is too simplistic.

A more general type of dependence is the partial conditional independence introduced by

Pattison and Robins (2002), which formulates a condition on the dependence that takes into

account not only which nodes are being potentially tied, but also the other ties that exist

in the graph: i.e., the dependence model is realization-dependent. This is a quite general

approach.

To introduce k-triangles, we use the following specific dependence assumption: in addi-

tion to the usual Markov dependencies, Yiv and Yuj are conditionally dependent, given the

rest of the graph, whenever yiu = yvj = 1 (see Figure 2). This partial conditional indepen-
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Figure 2: Partial conditional dependence when four-cycle is created

dence assumption states that two possible edges with four distinct nodes are conditionally

dependent whenever their existence in the graph would create a four-cycle. One substantive

interpretation is that the possibility of a four-cycle establishes the structural basis for a “so-

cial setting” among four individuals (Pattison and Robins, 2002), and that the probability

of a dyadic tie between two nodes (here, i and v) is affected not just by the other ties of

these nodes but also by other ties within such a social setting, even if they do not directly

involve i and v.

A four-cycle assumption is a natural extension of modeling based on triangles (three-

cycles), and was first used by Lazega and Pattison (1999) in an examination of whether such

larger cycles could be observed in an empirical setting to a greater extent than could be

accounted for by parameters for configurations involving at most 3 nodes. Let us consider

the four-cycle assumption alongside the Markov dependence. Under the Markov assumption,

Yiv is conditionally dependent on each of Yiu, Yuv, Yij and Yjv, because these edge indicators

share a node. So if yiu = yjv = 1 (the precondition in the four-cycle partial conditional

dependence), then all five of these possible edges can be mutually dependent, and hence

the exponential model (4) could contain a parameter corresponding to the count of such
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configurations. We term this configuration, given by

yiv = yiu = yij = yuv = yjv = 1 ,

a two-triangle (see Figure 3). It represents the edge yij = 1 as part of the triadic setting

yij = yiv = yjv = 1 as well as the setting yij = yiu = yju = 1.
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Figure 3: Two pictures of a two-triangle

Motivated by this approach, we introduce here a generalization of triadic structures in the

form of graph configurations that we term k-triangles. For a non-directed graph, a k-triangle

with base (i, j) is defined by the presence of a base edge i−j together with the presence of at

least k other nodes adjacent to both i and j. We denote a ‘side’ of a k-triangle as any edge

that is not the base. The integer k is called the order of the k-triangle. Thus a k-triangle is

a combination of k individual triangles, each sharing the same edge i− j. The concept of a

k-triangle can be seen as a triadic analogue of a k-star. If kmax denotes the highest value of

k for which there is a k-triangle on a given base edge (i, j), then the larger kmax, the greater

the extent to which i and j are adjacent to the same nodes, or alternatively to which i and

j share network partners. Because the notion of k-triangles incorporates that of an ordinary

triangle (k = 1), k-triangle statistics have the potential for a more granulated description of

transitivity in social networks.
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Figure 4: k-triangle for k = 5, i.e., 5-triangle

A summary of how dependence structures relate to conditional independence models is

given by Robins and Pattison (in press). Here we use the property, proved by Pattison and

Robins (2002), that a partial conditionally independent graph model will be an exponential

random graph (4) with certain statistics in the exponent.
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We propose a model where the statistics u(y) contain, in addition to those of the Markov

model, parameters for all k-triangles. It should be noted that the k-triangle counts for

different k are all related. A three-triangle configuration, for instance, necessarily comprises

three two-triangles, so the number of three-triangles cannot be less than thrice the number

of two-triangles. Assuming appropriate graph realizations, every possible edge in a three-

triangle configuration is conditionally dependent on every other possible edge through one or

the other of the two-triangles, and hence as all possible edges are conditionally dependent,

there is a parameter pertaining to the three-triangle in the model. Induction on k shows that

the Markovian conditional dependence with the four-cycle partial conditional dependence

implies that there can be a parameter in the model for each possible k-triangle configuration.

We see advantage in using k-triangles as a basis for assessing transitivity because large

counts of individual triangles can be subsumed into smaller counts of k-triangles for k > 1,

and because limiting the number of high-order k-triangles is a good way to let the probability

distribution stay away from the complete graph.

A suitable representation of transitivity in social networks cannot be based on triangles

alone, as it must express not only that there are comparitively many triangles, but also that

there are not too many high-order k-triangles. Therefore we propose to introduce relations

among the various k-triangle count statistics in much the same way as for alternating k-

stars, so as to limit the probability of occurrence of a large number of high-order k-triangles.

Analogous to the alternating k-stars model, the k-triangle model described below implies

a possibly substantial increase in probability for an edge to appear in the graph if it is

involved in only one triangle, with further but smaller increases in probability as the number

of triangles that would be created increases (i.e., as the edge forms k-triangle of larger and

larger order.) Thus, the increase in probability for creation of a k-triangle is a decreasing

function of k. There is a substantively appealing interpretation: if a social tie is not present

despite many shared social partners, then there is likely to be a serious impediment to that tie

being formed at all (e.g., impediments such as limitations to the number of nodes connected

together in a very dense cluster, mutual antipathy, or geographic distance, depending on the

empirical context). In that case, the addition of even more shared partners is not likely to

increase the probability of the tie greatly.

The number of k-triangles can be expressed by the formula

Tk = ]
{(
{i, j}, {h1, h2, . . . , hk}

)
| {i, j} ⊂ V, {h1, h2, . . . , hk} ⊂ V,

yij = 1 and yih`
= yh`j = 1 for ` = 1, . . . , k

}
=

∑
i<j

yij

(
L2ij

k

)
(for k ≥ 2), (20a)
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where L2ij, defined in (10), is the number of two-paths connecting i and j. (Note that for

undirected graphs, two-paths and two-stars refer to the same configuration yih = yhj = 1;

the name ‘star’ points attention to the middle vertex h, the name ‘path’ to the end vertices

i and j.) If there exists a tie i− j, the value k = L2ij is also the maximal order k for which

a k-triangle exists on the base (i, j). The formula for the number of triangles, which can be

called 1-triangles, is different, due to the symmetry of these configurations:

T1 =
1

3

∑
i<j

yijL2ij . (20b)

We propose a model where these k-triangle counts occur as sufficient statistics in (4),

but with weights for the binomial coefficients
(

L2ij

k

)
that have alternating signs and are

geometrically decreasing, like those in the alternating k-stars.1 We start with the 1-triangles

– in contrast to (13) –, these being the standard type of triangles on which the others are

based, with a weight of 3 aimed at obtaining a simple expression in terms of the numbers

L2ij. This leads to the following statistic, for which three equivalent expressions are given

using (20) and the binomial formula,

u
(t)
λ (y) = 3T1 −

T2

λ
+
T3

λ2
− ... + (−1)n−3 Tn−2

λn−3

=
∑
i<j

yij

n−2∑
k=1

(
−1

λ

)k−1(
L2ij

k

)

= λ
∑
i<j

yij

{
1 −

(
1− 1

λ

)L2ij

}
. (21)

This counts the number of triangles but downweights the large numbers of triangles formed

by the single tie i− j when there are many actors linked to i as well as j — i.e., when L2ij

is large. Note that the factor {1 − (1− 1/λ)L2ij} increases from 0 for L2ij = 0 to almost 1

for L2ij = n− 2. As in the case of k-stars, the statistic can be constructed by imposing the

constraint τk = −τk−1/λ, where τk is the parameter pertaining to Tk.

We propose to use this statistic as a component in the exponential model (4) to model

transitivity, in an attempt to provide a model that will be better able than the Markov

graph model to represent empirically observed networks. In some cases, this statistic can

be used alongside T = T1 in the vector of sufficient statistics, in other cases only either

(21) (or, perhaps, only T1) will be used – depending on how the best fit to the empirical

data is achieved, and on the possibility to obtain a non-degenerate model and satisfactory

convergence of the estimation algorithm.

1Here also, a decomposition analogous to the geometrically weighted degree count could be given, but
this would be more complicated.
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The associated change statistic is

zij = λ

{
1 −

(
1− 1

λ

)L̃2ij

}
(22)

+
∑

h

{
yih yjh

(
1− 1

λ

)L̃2ih

+ yhi yhj

(
1− 1

λ

)L̃2hj

}
,

where L̃2uv is the number of two-paths connecting nodes u and v in the reduced graph ỹ

(where ỹij is forced to be 0) for the various nodes u and v.

The change statistic demonstrates some interesting properties of the k-triangle model.

Suppose λ = 2 and the edge i− j is at the base of a k-triangle and consider the first term in

the expression above. Then, similarly to the alternating k-stars, there is no great difference

to the conditional log-odds of the edge being observed for values of k above 4 or 5 (unless

perhaps the parameter value is rather large compared to other effects in the model). The

model expresses the notion that it is the first one to three shared partners that principally

influence transitive closure, with additional partners not substantially increasing the chances

of the tie being formed. The second and third terms of the change statistic relate to situations

where the tie completes a k-triangle as a side rather than as the base. Here there is a different

effect. E.g., for the second term, the edge i − h is the base and h is a partner shared with

j; the change statistic decreases as a function of the number of two-paths from i to h. This

might be interpreted as actor i, already sharing many partners with h, feeling little impetus

to establish a new shared partnership with j who also is a partner to h.

Just as for the alternating k-stars, this statistic is considered for λ ≥ 1, and the down-

weighting of higher-order k-triangles is greater accordingly as λ is larger. Again, the bound-

ary case λ = 1 has a special interpretation. For λ = 1 the statistic is equal to

u
(t)
1 (y) =

∑
i<j

yij I{L2ij ≥ 1} , (23)

the number of pairs (i, j) that are directly linked (yij = 1) but also indirectly linked (yih =

yhj = 1 for at least one other node h). In this case the change statistic is

zij = I{L̃2ij ≥ 1} +
∑

h

{
yih yjh I{L̃2ih = 0} + yhi yhj I{L̃2hj = 0}

}
. (24)

3.3 Alternating independent two-paths

It is tempting to interpret the effect of the alternating k-triangles as an effect for a tie to form

on a base, emergent from the various two-paths that constitute the sides. But the change

statistic makes clear that formation of alternating k-triangles involves not only the formation
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of new bases of k-triangles, but also new sides of k-triangles, which should be interpreted

as contributing to prerequisites for transitive closure rather than as establishing transitive

closure. In order to differentiate between these two interpretations, it is desirable to control

for the prerequisites for transitive closure, i.e., the number of configurations that would be

the sides of k-triangles if there would exist a base edge. This means that we consider in

addition the effect of connections by two-paths, irrespective of whether the base is present or

not. This is precisely analogous in a Markov model to considering both potential triangles -

i.e., two-stars and two-paths – and actual triangles. For Markov models, the presence of the

two-star effect permits the triangle parameter to be interpreted simply as transitivity, rather

than a combination of both transitivity and two-paths. Otherwise it is not clear whether

triangles have formed merely as a chance agglomeration of many two-paths. Including the

following configuration implies that the same interpretation is valid in our new model.

We introduced k-triangles as an outcome of a four-cycle dependence structure. Of course,

a four-cycle is a combination of two two-paths. The sides of a k-triangle can be viewed as

combinations of four-cycles. More simply, we construe them as independent (the graph-

theoretical term for non-intersecting) two-paths connecting two nodes.
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Figure 5: 2-independent two-paths (left) and 5-independent two-paths (right)

Thus, we define k-independent two-paths as configurations (i, j, h1, . . . , hk) where all

nodes h1 to hk are adjacent to both i and j, irrespective of whether i and j are tied. Their

number is expressed by the formula

Uk = ]
{(
{i, j}, {h1, h2, . . . , hk}

)
| {i, j} ⊂ V, {h1, h2, . . . , hk} ⊂ V,

i 6= j, yih`
= yh`j = 1 for ` = 1, . . . , k

}
=

∑
i<j

(
L2ij

k

)
(for k 6= 2) (25a)

U2 =
1

2

∑
i<j

(
L2ij

2

)
(number of four-cycles); (25b)

the specific expression for k = 2 is required because of the symmetries involved. The
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corresponding statistic with alternating and geometrically decreasing weights is

up
λ(y) = U1 −

2

λ
U2 +

n−2∑
k=3

(
−1

λ

)k−1

Uk

= λ
∑
i<j

{
1 −

(
1− 1

λ

)L2ij

}
, (26)

where, in analogy to the statistic for the k-triangles, the extra factor 2 is used for U2 in order

for the binomial formula to yield the nice expression (26). This is called the alternating

independent two-paths statistic. The change statistic is

zij =
∑
h 6=i,j

{
yjh

(
1− 1

λ

)L̃2ih

+ yhi

(
1− 1

λ

)L̃2hj

}
. (27)

As for the alternating k-star and k-triangle statistics, the alternating independent two-

paths statistic can be generated by imposing the constraint νk = −νk−1/λ, where νk is the

parameter corresponding to Uk.

For λ = 1 the statistic reduces to

up
1(y) =

∑
i<j

I{L2ij ≥ 1} , (28)

the number of pairs (i, j) which are indirectly connected by at least one two-path. This

statistic is counterpart to statistic (23), the number of pairs both directly and indirectly

linked. Taken together they assess effects for transitivity in precise analogy with triangles

and two-stars for Markov graphs. Since two nodes i and j are at a geodesic distance of two if

they are indirectly linked but not directly linked, the number of nodes at a geodesic distance

two is equal to (28) minus (23). The change statistic for λ = 1 is

zij =
∑
h 6=i,j

{
yjh I{L̃2ih = 0} + yhiI{L̃2hj = 0}

}
. (29)

3.4 Summarizing the proposed statistics

Summarizing the preceding discussion, we propose to model transitivity in networks by

exponential random graph models that could contain in the exponent u(y) the following

statistics.

1. The total number of edges S1(y), to reflect the density of the graph;

this is superfluous if the analysis is done conditional on the total number of edges –

and this indeed is our advice.
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2. The geometrically weighted degree distributions defined by (11), or equivalently the

alternating k-stars (13), for a given suitable value of α or λ, to reflect the distribution

of the degrees.

3. This can be supplemented, or replaced, by the number of two-stars S2(y) or sums

of reciprocals or ascending factorials (18); the choice between these degree-dependent

statistics will be determined by the resulting fit to the data and the possibility to

obtain satisfactory parameter estimates.

4. The alternating k-triangles (21) and the alternating independent two-paths (26), again

for a suitable value of λ (which should be the same for the k-triangles and the alter-

nating independent two-paths, but may differ from the value used for the alternating

k-stars), to reflect transitivity and the preconditions for transitivity.

5. This can be supplemented with the triad count T (y) = T1(y), if a satisfactory estimate

can be obtained for the corresponding parameter, and if this yields a better fit as shown

from the t-statistic for this parameter.

Of course, actor and dyadic covariate effects can also be added. The choice of suitable values

of α and λ depends on the data set. Fitting this model to a few data sets, we had good

experience with λ = 2 or 3 and the corresponding α = ln(2) or ln(1.5). In some cases it may

be useful to include the statistics for more than one value of λ, e.g., λ = 1 (with the specific

interpretations as discussed above) together with λ = 3.

Under the ERGM defined by these statistics, two edge indicators Yij and Yuv are condi-

tionally dependent, given all other edges, only if either

(1) the vertices i, j, u, v are not all distinct, i.e., {i, j} ∩ {u, v} 6= ∅, or

(2) the vertices i, j, u, v are all distinct, and Yiu = Yvj = 1 or Yiv = Yuj = 1, i.e., if the edges

existed they would be part of a four-cycle.

This dependence extends the classical Markovian dependence, expressed by the first con-

dition, in a meaningful way to a dependence within social settings. It should be noted,

however, that this type of partial conditional dependence is satisfied by a much wider class

of stochastic graph models than the transitivity-based models proposed here. Parsimony of

modeling leads to restricting attention primarily to the statistics proposed here. Further

modeling experience and theoretical elaboration will have to show to what extent it is desir-

able to continue modeling by including counts of other higher-order subgraphs, representing

more complicated group structures.
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4 New Modeling Possibilities With These Specifica-

tions

In this section, we present some results from simulation studies of these new model speci-

fications. This section is far from a complete exploration of the parameter space. It only

provides examples of the types of network structures that may emerge from the new specifica-

tions. More particularly, it is illustrated how the new alternating k-triangle parameterization

avoids certain of the problems with degeneracy noted above in regard to Markov random

graph models.

We present results for distributions of non-directed graphs of 30 nodes. The simula-

tion procedure is similar to that used in Robins et al (in press). In summary, we simu-

late graph distributions using the Metropolis-Hastings algorithm from an arbitrary starting

graph, choosing parameter values judiciously to illustrate certain points. Typically we have

simulation runs of 50,000, with a burn-in of 10,000, although when MCMC diagnostics in-

dicate that burn-in may not have been achieved we carry out a longer run, sometimes up

to half a million iterations. We sample every 100th graph from the simulation, examining

graph statistics, and geodesic and degree distributions.

4.1 Geometrically weighted degree distribution

The graph in Figure 6 is from a distribution obtained by simulating with an edge parameter

of –1.7 and a weighting parameter (α = ln(2) = 0.693, corresponding to λ = 2) of 2.6.

This is a low density graph with 25 edges and a density of 0.06, and in terms of graph

statistics is quite typical of graphs in the distribution. Even despite the low density, the

graph shows elements of a core-periphery structure, with some relatively high degree nodes

(one with degree 7), several isolated nodes, and some low degree nodes with connections

into the higher degree “core”. What particularly differentiates the graph from a comparable

Bernoulli graph distribution with a mean of 25 edges is the number of stars, especially higher

order stars. For instance, the number of 4-stars in the graph is 3.5 standard deviations

above that from the Bernoulli distribution. This is the result of a longer tail on the degree

distribution, compensated by larger numbers of low degree nodes. (For instance, less than

2% of corresponding Bernoulli graphs have the combination expressed in this graph of 18

or more nodes isolated or of degree 1, and of at least one node with degree 6 or above.)

Because of the core-periphery elements, the triangle count in the graph, albeit low, is still 3.7

standard deviations above the mean from the Bernoulli distribution. Monte Carlo maximum

likelihood estimates using the procedure of Snijders (2002) as implemented in the program

SIENA (Snijders and Huisman, 2003) reassuringly reproduced the original parameter values,
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with an estimated edge parameter of –1.59 (standard error 0.35) and a significant estimated

geometrically weighted degree parameter of 2.87 (s.e. 0.86) .

Figure 6: A graph from an alternating k-star distribution

It is useful to compare the geometrically weighted degree distribution, or alternatively

alternating k-star graph distribution, of which the graph in Figure 6 is an example, against

the Bernoulli distribution with the same expected number of edges. Figure 7 is a scatter plot

comparing the number of edges against the alternating k-stars statistic for both distributions.

The figure demonstrates a small but discernible difference between the two distributions in

terms of the number of k-stars for a given number of edges. There is also a tendency here

for greater dispersion of edges and alternating k-stars in the k-star distribution. As with

our example graph, in the alternating k-star distributions there are more graphs with high

degree nodes, as well as graphs with more low degree nodes.

Finally, in Figure 8, we illustrate the behavior of the model as the alternating k-star

parameter increases. The figure plots the mean number of edges for models with an edge

parameter of –4.3 and varying alternating k-star parameters, keeping λ = 2. Equation (13)

implies that, as a graph becomes denser, the change statistic for alternating k-stars be-

comes closer to its constant maximum, so that high density distributions are very similar

to Bernoulli graphs. In Figure 8, with an alternating k-star parameter of 1.0 or above, the

properties of individual graphs within these distributions are difficult to differentiate from

Bernoulli graphs. Even so, the distributions themselves (except those that are extremely

dense) tend to exhibit much greater dispersion in graph statistics, including in the number

of edges. The important point to note here is that there is a relatively smooth transition

from low density to high density graphs as the parameter increases, without the almost dis-

continuous jumps that betoken degeneracy and are often exhibited in Markov random graph

models with positive star parameters.
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Figure 7: Scatterplot of edges against alternating k-stars for Bernoulli and alternating k-star
graph distributions

4.2 Alternating k-triangles

The degeneracy issue for transitivity models, and the advance presented by the alternating

k-triangle specification, are illustrated in Figure 9. This figure depicts mean number of edges

for three transitivity models for various values of a transitivity-related parameter. Each of

these models contains a fixed edge parameter, set at –3.0, plus certain other parameters.

The first model (labeled ‘triangle without star parameters’ in the figure) is a Markov

model with simply the edge parameter and a triangle parameter. For low values of the tri-

angle parameter, only very low density graphs are observed; for high values only complete

graphs are observed. There is a small region, with a triangle parameter between 0.8 and

0.9, where either a low density or a complete graph may be the outcome of a particular

simulation. This bimodal graph distribution for certain triangle parameter values was ob-

served by Snijders (2002). Clearly, this simple two parameter model is quite inadequate to

model realistic social networks that exhibit transitivity effects. It reinforces the argument

by Robins et al (in press) that more complex models may give greater leverage in avoiding

degeneracy.

The second model (labeled ‘triangle with negative star parameters’ in the figure) is a

Markov model with the inclusion of 2- and 3-star parameters as recommended by Robins

et al (in press), in particular a positive 2-star parameter value (0.5) and a negative 3-

star parameter value (–0.2), and a triangle parameter with various values. The negative

star parameter (in this case, the 3-star) widens the non-degenerate region of the parameter
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Figure 8: Mean number of edges in alternating k-star distributions with different values of
the alternating k-star parameter

space, by preventing the explosion of edges that leads to complete graphs. In this example,

this works well until the triangle parameter reaches about 1.1. Below this value, the graph

distributions are stochastic, of relatively low density, and tend to have high clustering relative

to the number of edges (in comparison to Bernoulli graph distributions). With a triangle

parameter above 1.1, however, the graph distribution tends to be “frozen”, not on the empty

or full graph but on disconnected cliques akin to the caveman graphs of Watts (1999). This

area of near degeneracy was observed by Robins et al (in press).

The third model (labeled ‘ktriangle’ in the figure), on the other hand, does not seem

to suffer the discontinuous jump, nor the caveman area of near degeneracy, of the first and

second models. It is a two parameter model with an edge parameter and an alternating k-

triangles parameter, and the expected density increases smoothly as a function of the latter

parameter.

A similar type of result can be seen by fixing the transitivity parameter in these models

and varying the edge parameter, as in Figure 10 (for the two Markov models, with a triangle

parameter of 1.0 and with star parameters as before; and for the alternating k-triangles

model, with an alternating k-triangles parameter of 0.8). Again there is a major discontinuity

for the Markov model without star parameters, and again the Markov model with star

parameters freezes into caveman-like structures at a certain point (with an edge parameter

greater than about –1.5). But once more the alternating k-triangle model moves from low

to high density in a relatively smooth way.

Figure 11 contains two examples of graphs from alternating k-triangles distributions. The
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Figure 9: Mean number of edges in various graph distributions with different values of a
triangle parameter

higher alternating k-triangles parameter (right panel of the figure) results understandably

in a denser graph but the transitive effects are quite apparent from the diagrams. Both

distributions have significantly higher transitivity than Bernoulli graphs. This is illustrated

in Figure 12 representing features of three graph distributions: the alternating k-triangles

distribution of which the right panel graph in Figure 11 is a representative (edge parameter

= –3.7; alternating k-triangle parameter = 1.1); the Bernoulli graph distribution with mean

number of edges identical to this alternating k-triangle distribution (edge parameter = –1.35,

resulting in a mean 89.5 edges); and a Markov random graph model with positive 2-star,

negative 3-star and positive triangle parameters, with parameter values chosen to produce

the same mean number of edges (edge parameter = –2.7; 2-star parameter = 0.5; 3-star

parameter = –0.2, triangle parameter = 1.0, mean number of edges = 88.8). We can see

from the figure that for the same number of edges the alternating k-triangle distribution

is clearly differentiated both from its comparable Bernoulli model, as well as the Markov

model, in having higher numbers of triangles. The Markov model also tends to have more

triangles than the Bernoulli model, reflecting its positive triangle parameter.

For an edge-plus-alternating-k-triangle model applied to the graph in the left hand panel

of Figure 11, SIENA produced Monte Carlo maximum likelihood estimates that converged

satisfactorily and were consistent with the original parameter values: edge –3.45 (s.e. 0.31),

alternating k-triangles 0.97 (s.e. 0.15). Estimates for a Markov model with 2-,3-star and

triangle parameters did not converge adequately in SIENA. Use of the ergm program sug-

gested that no maximum likelihood estimate existed for models including up to 4-stars, with
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Figure 10: Mean number of edges in various graph distributions with different values of an
edge parameter

or without triangle parameters. It seems that the dense core of triangulation produced in

graphs from this distribution take us into nearly degenerate regions of the parameter space

of Markov models.

4.3 Independent two-paths

Some of the distinctive features of independent two-path distributions are as follows. A

simple way to achieve many independent two-paths is to have cycles through two high de-

gree nodes. This is what we see in Figure 13, which is a graph from a distribution with

edge parameter –3.7 and independent two- paths parameter 0.5. Compared to a Bernoulli

graph distribution with the same mean number of edges, this graph distribution has sub-

stantially more stars, triangles, k-stars, k-triangles and of course independent two-paths. It

is dramatically different from the Bernoulli distribution.

With increasing independent two-paths parameter, the resulting graphs tend to have

two centralized nodes, but with more edges among the non-central nodes. For lower (but

positive) independent two-paths parameters, however, only one centralized node appears,

resulting in a single star-like structure, with several isolates. We know of no set of Markov

graph parameters that can produce such large star-like structures, without conditioning on

degrees.
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Figure 11: A low density and a higher density k-triangle graph
(Note: edge parameter = –3.7 for both; alternating k-triangles parameter = 1.0 for left panel
and 1.1 for right panel)

4.4 Combinations of the parameters

We have experimented with various combinations of the parameters to examine the emergent

properties of the distribution. This is a matter for ongoing work but there are a few early

results that we can briefly note here, particularly in regard to combinations of alternating

k-triangles and independent two-paths. A strong alternating k-triangle effect may produce

one core of high density nodes with many triangles among them, as in the right panel

of Figure 11. When a positive alternating k-triangle effect is combined with a negative

independent two-paths effect, the result can be a structure akin to a caveman graph with

two caves, although in this case the simulation is not frozen and remains stochastic. This

is a notable result that opens the possibility of estimation for structures of which hitherto

only deterministic versions have been studied. As might be expected, a positive independent

two-paths parameter in the presence of a negative k-triangle parameter results in graphs

with two centralized nodes without a connection between them, or, for lower densities, in

graphs with one highly centralized node.

5 Example: Collaboration Between Lazega’s Lawyers

Several examples will be presented based on a data collection by Lazega, described exten-

sively in Lazega (2001) on relations between lawyers in a New England law firm (also see

Lazega and Pattison, 1999). As a first example, the symmetrized collaboration relation was

used between the 36 partners in the firm, where a tie is defined to be present if both partners

indicate that they collaborate with the other. The average degree is 6.4, the density is 0.18,

and degrees range from 0 to 13. Several actor covariates were considered: seniority (rank
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Figure 12: Number of triangles against number of edges for three different graph distributions

number of entry in the firm), gender, office (there were three offices in different cities), years

in the firm, age, practice (litigation or corporate law), and law school attended (Yale, Other

Ivy League, or non-Ivy League).

It was investigated how this collaboration relation can be explained on the basis of the

three structural statistics introduced above (alternating combinations of two-stars, alternat-

ing k-stars, and alternating independent two-paths), the more traditional other structural

statistics (counts of k-stars and triangles), and the covariates. For the covariates X with

values xi, two types of effect were considered as components of the statistic u(y) in the expo-

nent of the probability function. The first is the main effect, represented by the component

xi . A positive parameter for this variable indicates that actors i high on X have a higher

tendency to make ties to others, which will show in a positive correlation between X and

the degrees. This main effect was considered for the numerical and dichotomous covariates.

The second is the similarity effect. For numerical covariates like age and seniority, this was

represented by the dissimilarity within pairs of actors expressed by the component | xi−xj |.
For the categorical covariates, office and law school, this was represented by the within-dyad

identity of the variable, expressed by the indicator function I{xi = xj} defined as 1 if xi = xj

and 0 otherwise. A negative parameter for the dissimilarity effect and a positive parameter

for the within-dyad identity effect reflect that actors who are similar on X have a higher

tendency to be collaborating, which will show in a positive network autocorrelation of X.

The estimations were carried out using the program SIENA (Snijders and Huisman,

2003), version 1.99, implementing the Metropolis-Hastings algorithm for generating draws
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Figure 13: A graph from a independent two-path distribution

from the exponential random graph distribution, and the stochastic approximation algorithm

described in Snijders (2002). Since, as any MCMC algorithm, this is a stochastic algorithm,

results will be different for different starting values of the estimates and the random number

streams of the algorithm. Checks were made for the stability of the algorithm by making

independent restarts, and these yielded practically the same outcomes. The program contains

a convergence check (indicated in the program as ‘Phase 3’): after the estimates have been

obtained, a large number of Metropolis-Hastings steps is made with these parameter values,

and it is checked if the average of the statistics u(Y ) calculated for the generated graphs

(with much thinning to obtain approximately independent draws) is indeed very close to

the observed values of the statistics. Only results are reported for which this stochastic

algorithm converged well, as reflected by t-statistics less than 0.1 in absolute value for the

deviations between all components of the observed u(y) and the average of the simulations,

which are the estimated expected values Eθ̂u(Y ) (cf. (5) and also equation (34) in Snijders,

2002).

The estimation kept the total number of ties fixed at the observed value, which implies

that there is a not a separate parameter for this statistic. This conditioning on the observed

number of ties is helpful for the convergence of the algorithm (for the example reported here,

however, good convergence was obtained also without this conditioning). Effects were tested

using the t-ratios defined as parameter estimate divided by standard error, and referring

these to an approximating standard normal distribution as the null distribution. Effects are

considered to be significant at approximately the level of α = 0.05 when the absolute value

of the t-ratio exceeds 2.

Some explorative model fits were carried out, and it turned out that of the covariates,
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the important effects are the main effects of seniority and practice, and the similarity effects

of gender, office, and practice. In Model 1 of Table 1, estimation results are presented

of a model which contains the three structural effects: geometrically weighted degrees for

α = ln(1.5) = 0.405 (corresponding to alternating combinations of two-stars for λ = 3),

alternating k-stars and alternating independent two-paths, both for parameter λ = 3 and

in addition, the last two of these effects for parameter λ = 1; as indicated above, the latter

effects are equal to the number of pairs of nodes both directly and indirectly connected, and

the number of pairs indirectly connected.

Table 1. MCMC parameter estimates for the symmetrized collaboration relation
among Lazega’s lawyers.

Model 1 Model 2
Parameter est. s.e. est. s.e.
Geom. w. degrees, α = ln(1.5) –0.797 2.844 – –
Alternating k-triangles, λ = 3 0.572 0.190 0.608 0.089
Alternating independent two-paths, λ = 3 –0.042 0.154 – –
Number pairs dir. & ind. connected 0.486 0.513 – –
Number pairs indirectly connected –0.025 0.188 – –
Seniority main effect 0.023 0.006 0.024 0.006
Practice (corporate law) main effect 0.391 0.116 0.375 0.109
Same practice 0.390 0.100 0.385 0.101
Same gender 0.343 0.124 0.359 0.120
Same office 0.577 0.110 0.572 0.100

The results show that none of the structural effects except the alternating k-triangles

has a t-ratio greater than 2. There is quite some collinearity between these effects. E.g.,

the estimated correlation between the estimate for the alternating independent two-paths

and that for the number of pairs indirectly connected is –0.93. All of the retained covariate

effects have t-ratios larger than 2. With a backward selection procedure, non-significant

effects were stepwise deleted from the model. The result is presented as Model 2 in Table 1.

The only remaining structural effect is the alternating k-triangles effect (θ̂j = 0.608, t = 6.8).

This indicates that there is strong evidence for transitivity, as represented by the k-triangles

effect, and not for any other structural effects except what is already represented by the

covariates.

It appears that this model is successful in representing also other structural characteristics

of this network, such as the numbers of two-, three-, and four-stars and the number of

triangles. The observed number of triangles is 120, while simulations of the ERGM (carried
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out also using the SIENA program) show that the expected number of triangles under Model

2 is 128.5 and its standard deviation is 13.2. So the difference is less than one standard

deviation. Fitting the model extended with the number of triangles indeed led to a non-

significant effect for the number of triangles. The observed number of four-stars is 6091,

and under Model 2 the expected number of four-stars is equal to 6635 and the standard

deviation is 1042; so here also the difference between observed and expected value is less

than one standard deviation. Thus, even though these statistics are not directly fitted,

the representation of the network structure by the alternating k-triangles together with the

covariate effects does give an adequate representation also of these graph statistics.

The estimates for the covariates are hardly different from those in Model 1. Note that

these can be interpreted as estimates of the covariate effects on a log-odds scale, similar to

effects in logistic regression models, except that they are controlled for the structural effects.

This implies that exp(θjd) is the multiplicative effect that a difference d on variable j has

on the estimated odds of a tie. Seniority ranges from 1 to 36, so the more senior partners

collaborate with more others, the odds ratio for the greatest difference of 35 being exp(0.024×
35) = 2.32. Corporate lawyers have an odds of collaboration that is exp(0.375) = 1.45 higher

than those doing litigation, and having the same specialty makes collaboration exp(0.385) =

1.47 more likely. The odds ratio related to having the same gender is exp(0.359) = 1.43,

that related to working in the same office is exp(0.572) = 1.77. All these odds ratios are

controlled for the structural transitivity effect. Summarizing, there are especially large effects

of seniority and of working in the same office, and slightly smaller but still large effects of

doing corporate law, having the same specialty, and having the same gender; in addition,

there is a strong transitivity effect.

The latter effect, represented by the alternating k-triangles, can be interpreted as evidence

that there are organizing principles in this network that go beyond homophilous selection

in creating triangles. The non-significance of the weighted degrees effect suggests that this

transitivity may not be the result of popularity selection effects alone. In this firm of lawyers,

it seems that collaborative structures arise not just because of lawyers’ personal backgrounds;

nor do they emerge by popular collaborators attracting less popular followers; rather, next

to the covariate effects, there is a distinct balance effect of self-organizing team formation,

resulting in close-knit transitive structures.

The good fit in the sense of good reproduction of a variety of other network statistics is

not strongly dependent on the value of the parameter λ. Values λ = 2, 4, and 5 also yielded

good results. The values λ = 1 and 6 were not satisfactory in this sense.

Model specifications containing the numbers of two-stars and of transitive triangles also

yielded convergence of the estimation algorithm, but did not succeed well in reproducing the
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observed number of pairs of nodes tied directly and indirectly; this implies that the number

of pairs at a geodesic distance equal to two was not reproduced adequately. Thus, we can

conclude that this example is a case where the traditional Markov random graph model for

transitivity can be practically applied, but where our new model specification yields a better

fit to the data.

5.1 Parameter sensitivity in various models

To illustrate the differences between the various model specifications and the difficulties of

some specifications, we present some simulation results where a parameter is varied in fitted

models. We contrast the specification based on the number of triangles to the one using the

alternating k-triangles. In addition, we compare models without and with conditioning on

the total number of edges.

A model similar to model 2 in Table 1 was fitted to this data set, and then a long sequence

of graphs was simulated by the MCMC procedure, starting with the empty graph, where all

parameters except one kept their fixed value, and one designated parameter slowly increased

from a low to a high value, and then decreased again to the low value, with 40,000 MCMC

iteration steps for each value of this parameter. The designated parameter was the parameter

representing transitivity, being the number of triangles, or the alternating k-triangles. The

figures present the generated values of the associated statistic after the 40,000 iterations for

each single parameter value.

Figure 14 gives the generated values for the model without conditioning on the number of

edges (which for the number of triangles did not lead to convergence, but was used anyhow).

A vertical line is plotted at the estimated parameter value, and a horizontal line at the

observed value of the statistic. This implies that the curve of expected values should exactly

go through the intersection of these two lines.

For the number of triangles, an almost discontinuous jump is observed, right at the

intersection point that was the target for the estimation procedure. In this left panel, for the

increasing parameter values, the jump up is made at a somewhat higher parameter value than

the jump down for the decreasing parameter values. This path-dependence, or hysteresis,

was also observed in Snijders (2002, p. 9), and is well-known for Ising models (Newman and

Barkema, 1999) which show a similar kind of degeneracy. In a small interval of parameter

values where this jump occurs, the distribution of the statistic (and of the graph density)

has a bimodal shape. The suddenness of the jump, and the fact that the observed statistic

is in the region of the jump, is associated with the large practical difficulties in fitting this

model to realistic data.

For the alternating k-triangles (right panel), a smoother sequence of values is obtained,
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Figure 14: Generated statistics for unconditional models, for triangle parameter (left) and
alternating k-triangles parameter (right).
(Symbol � indicates simulated values generated for increasing parameter values, ∗ those
generated for decreasing values.)

but still the slope is quite large, especially near the parameter value of about 0.6 where the

simulated values ‘take off’ from their starting values close to 0. This is similar to what is

shown for the expected values of the density in Figures 8 and 9.

Analogous simulated values, but for models conditioning on the observed number of

edges, are given in Figure 15.

Here we see in both cases a much smoother process. The hysteresis effect for the number

of triangles is not observed any more, suggesting good mixing of the MCMC procedure, but

this model still has a quite strong slope near the observed value of the statistic. For the right

panel in Figure 15, which combines conditional estimation with the alternating k-triangles

statistic, the generated values form a smooth pattern which confirms that estimation can

proceed smoothly for this model. The figures together illustrate that both working with

the newly proposed statistics rather than with the number of triangles, and conditioning on

the number of edges, contribute to better possibilities for parameter estimation. Combining

both elements yields especially good results.

6 Directed Relations

Directed relations are perhaps more frequent in social network research than undirected

relations. For directed relations, the requirement Yij = Yji for the adjacency matrix is

dropped, and the oriented nature of ties is reflected by using the term ‘arcs’ rather than

‘edges’. Except for the number of ties, all statistics discussed above have multiple analogues

for the directed case, depending on the orientation of the ties. Rather than listing and

34



0.0 0.2 0.4 0.6 0.8 1.0

100

200

300

400

500

θj

uj(y)

������
���������������

��
���������
���
�
��

�

�

�����

�
�

�

�

�����
��
��������
�������
����������
��������������������∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗
∗
∗∗∗
∗

∗

∗
∗∗

∗

∗

∗

∗∗
∗
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

−0.2 0.2 0.6 1.0 1.4

50

100

150

200

250

320

θj

uj(y)

�
������
���
�
�
���
�
��
�
���
�
��

�����
��
�
��
����
��
��������
�����
��
�

��
��������
�
����
������
�������
����
�
����
����
���∗∗∗∗∗∗∗∗∗

∗∗∗∗
∗
∗∗∗∗∗∗∗∗∗∗∗∗

∗
∗∗
∗∗
∗
∗∗
∗
∗∗
∗
∗∗∗
∗
∗∗∗∗
∗
∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗
∗
∗∗∗∗∗
∗∗
∗
∗
∗∗∗∗
∗∗∗
∗∗∗∗∗
∗
∗∗∗
∗∗
∗∗∗∗∗∗∗

∗
∗
∗

Figure 15: Generated statistics for conditional models, for triangle parameter (left) and
alternating k-triangles parameter (right).
(Symbol � indicates values generated for increasing parameter values, ∗ those generated for
decreasing values.)

discussing, for the statistics proposed above, all different analogues that can occur depending

on the possible tie orientations, we give in this section a brief list of what we think are the

most important versions of these statistics for directed graphs. Since an elaborate discussion

would mainly repeat much of what has been said above, we refrain from giving an extensive

motivation. (It may be noted that in the formulae given above for the undirected case, we

have chosen the order of the subscripts indicating the nodes in such a way that many of the

formulae are valid also for the directed case.)

For directed relations, we propose to use exponential random graph models with the

following statistics for the structural part of the model.

1. The total number of arcs∑
i6=j

Yij ;

this is a superfluous element of the sufficient statistics if the analysis is done (as advised)

conditional on the number of arcs.

2. The number of mutual dyads∑
i<j

Yij Yji .

3. Geometrically weighted out-degrees

u(od)
α (y) =

n−1∑
k=0

e−αkd
(out)
k (y) =

n∑
i=1

e−αyi+ , (30)
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and geometrically weighted in-degrees

u(id)
α (y) =

n−1∑
k=0

e−αkd
(in)
k (y) =

n∑
i=1

e−αy+i , (31)

where d
(out)
k (y) and d

(in)
k (y), respectively, are the numbers of nodes with out-degree

or in-degree equal to k. Similar to (14), these statistics can be expressed also as

alternating out-k-star combinations and alternating in-k-star combinations.

4. This can be supplemented, or replaced, by the number of in-two-stars and the number

of out-two-stars, reflecting the in-degree variance and the out-degree variance.

5. The alternating transitive k-triangles defined by

λ
∑
i,j

yij

{
1 −

(
1− 1

λ

)L2ij

}
(32)

and the alternating independent two-paths defined by

λ
∑
i,j

{
1 −

(
1− 1

λ

)L2ij

}
, (33)

where L2ij is still the number of two-paths defined by (10); the orientations implied by

these formulae are illustrated in Figure 16.
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Figure 16: Transitive three-triangle (left) and 3-independent two-paths (right)

6. This can be supplemented with the count of transitive triads∑
i,j,h

Yij Yjh Yih

and the number of two-paths, the latter reflecting the covariance between in-degrees

and out-degrees.

The change statistic for the geometrically weighted out-degrees is

zij = −
(
1− e−α

)
e−αỹi+ . (34)

The change statistic is still given for the alternating transitive k-triangles by (22), and for

the alternating independent two-paths by (27).
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6.1 Example: friendship between Lazega’s lawyers

As an example of modeling a directed relation, we use the friendship relation between the

36 partners in the law firm studied by Lazega (2001). This is a network with density 0.21

and average degree 7.4. In-degrees vary from 2 to 16, out-degrees from 0 to 21. The larger

variability of the degrees and skewness of the distribution of the out-degrees indicates that

here it may be more difficult to obtain a well fitting model than in the preceding example. The

same covariates are used as in the above analysis of the collaboration relation. For effects of

actor-level covariates on directed relations, instead of the main effect we distinguish between

(1) the activity or out-degree effect, represented in u(y) by the component xi+ , for which

a positive parameter will lead to a positive correlation between the covariate and the out-

degrees; and (2) the popularity or in-degree effect, represented by x+i , which contributes to

the correlation between the covariate and the in-degrees. Preliminary analyses showed that

the main covariate effects were the similarity effect of working in the same office, and the

effects associated with seniority (rank number of entry in the firm) and practice (litigation

vs. corporate law). The same procedure for estimation was used as in the preceding example.

A forward selection procedure using the effects listed above, with estimation conditional on

the total number of ties, led to the results presented in Table 2. Model 1 contains, next

to various covariate effects, the four structural effects proposed above. This appeared not

to give a good fit with respect to the number of out-k-stars for k = 2, 3, 4. Therefore the

model was extended with the the numbers of in-two-stars, out-two-stars, and two-paths.

This means that the observed covariance matrix of the in- and out-degrees is fitted exactly.

The results are presented in Table 2 as Model 2.

The estimation procedure for both models presented in this table converged well, but

in this case without conditioning on the total number of ties it was not possible to obtain

convergence of the estimation algorithm. Model specifications including the total number

of transitive triplets as a separate statistic likewise did not lead to converging estimates.

The strong correlations between the structural statistics leads to very strongly correlated

parameter estimates, so that for a good reproduction of the model actually more decimal

places for the parameter estimates are required than given in Table 2 (cf. the remark on p. 32

of Snijders, 2002). The parameter estimates for the geometrically weighted out-degrees, ge-

ometrically weighted in-degrees, and alternating independent two-paths effects are strongly

different between Models 1 and 2, due to the inclusion in Model 2 of the out-two-stars,

in-two-stars, and two-paths effects. There is a strong transitivity effect, represented by al-

ternating transitive k-triangles with λ = 2 (t = 0.704/0.146 = 4.8 in Model 2). Further,

there is evidence that –controlling for these structural effects– friendship is more likely be-

tween partners working in the same office, between those similar in seniority (this can be
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Table 2. MCMC parameter estimates for the friendship relation between Lazega’s
lawyers.

Model 1 Model 2
Parameter est. s.e. est. s.e.
Mutual dyads 1.653 0.257 2.405 0.291
Out-two-stars – – 0.131 0.015
In-two-stars – – 0.149 0.024
Two-paths – – –0.090 0.019
Geom. w. out-degrees, α = ln(2) 0.940 1.180 –1.332 1.364
Geom. w. in-degrees, α = ln(2) –4.572 2.204 –8.384 3.708
Alternating transitive k-triangles, λ = 2 0.661 0.142 0.704 0.146
Alternating independent two-paths, λ = 2 –0.140 0.031 –0.065 0.034
Same office 0.582 0.125 0.859 0.169
Seniority popularity –0.002 0.007 0.001 0.007
Seniority activity 0.013 0.007 0.010 0.006
Seniority dissimilarity –0.039 0.008 –0.041 0.008
Practice (corp. law) popularity –0.052 0.160 0.067 0.114
Practice (corp. law) activity 0.328 0.137 0.200 0.097
Same practice 0.279 0.125 0.292 0.129

interpreted in part as a cohort effect), and those with the same practice. Those doing cor-

porate law mention more friends than those doing litigation. The other covariate effects are

not significant. Other effects, such as the number of transitive triplets and the numbers of

three-stars and four-stars also are represented adequately, each with a difference between

observed and estimated expected value of less than 1.5 standard deviation.

A positive effect of alternating k-triangles in the presence of a negative independent two-

paths effect suggests that the friendship network tends to be clique-like, with possibly several

different denser clusters of friends. Because the geometrically weighted in-degree parameters

are negative, high in-degrees and high order in-stars are less likely in this network, unless of

course they are implied by the transitive structure and therefore are involved in cliques of

friends. So popular friends tend to be popular within clusters of dense friendships, rather

than between clusters.

Compared to the collaboration relation, modeling the friendship relation requires a much

more complicated structural model. This network is an example where modeling transitivity

by the number of transitive triplets by itself is not successful, whereas modeling transitivity

by the alternating transitive k-triangles is successful and also does provide a good fit for the

number of transitive triplets.
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6.2 Parameter sensitivity in two models

For this model also, the sensitivity of generated statistics to the parameter representing

transitivity can yield insights in the possibility of modeling by using a particular model

specification. Two models were considered, both with conditioning on the observed number

of ties: the model in Table 2 and the corresponding model with the four new statistics

replaced by the number of transitive triplets. For the latter model the parameter estimation

did not converge satisfactorily, but the parameter values were used anyway. Figure 17 gives

simulated statistics for a continuous MCMC chain of graphs, where all parameter values were

fixed at these estimated values, except for the number of transitive triplets (left panel) and

the alternating k-triangles (right panel), which started at a very low value, increased in little

steps to a very high value, and then decreased again to the low value. Again, 40,000 iteration

steps of the MCMC algorithm were made for each parameter value and the resulting value

of the statistic corresponding to the changing parameter is represented in the figure.
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Figure 17: Generated statistics for models for transitive triplets parameter (left) and alter-
nating k-triangles parameter (right).
(Symbol � indicates values generated for increasing parameter values, ∗ those generated for
decreasing values.)

For the transitive triplets model, there is a very strong jump that occurs right at the

observed value of the statistic, indicating the impossibility to adequately model this data

set using this particular model – even when conditioning on the observed number of ties.

A hysteresis effect can again be discerned (for more iteration runs than 40,000, this would

decrease and eventually disappear). For the alternating k-triangles model (right panel),

there is a jump but it occurs in a region representing a much smaller extent of transitivity

than observed (at a parameter value about –0.5), and does not invalidate the application

of this model for this data set. The generated statistics for this model vary stochastically
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about a smooth function of this parameter in a wide region comprising the observed value

of the statistic, which corresponds to the possibility to indeed obtain adequate parameter

estimates for this specification.

7 Discussion

The methodology based on exponential random graph models, also called p∗ models, of which

the principles were introduced and elaborated by (among others) Frank and Strauss (1986),

Frank (1991), Wasserman and Pattison (1996), Snijders (2002), and Handcock (2002b), cur-

rently is the only statistical methodology for representing transitivity and other structural

features in non-longitudinal network data. Its use has been hampered by problems which

now can be diagnosed –at least in part– as deficiencies in the specification of the sufficient

statistics defining the exponential model. The traditional specification, where transitivity

is represented by the number of transitive triangles or triplets as implied by the Markov

assumption of Frank and Strauss (1986), does not allow a good representation of the quite

large but far from complete tendency to transitivity that is commonly observed in social net-

works. A symptom of these problems is the difficulty to find maximum likelihood estimates,

but the near degeneracy and poor fit of the implied model is the more fundamental issue.

In this paper we have proposed a new specification of network statistics defining the

exponential random graph model. The new statistics are geometrically weighted degrees to

represent degree heterogeneity; alternating k-triangles to represent transitivity; and alter-

nating independent two-paths to represent the preconditions for transitive configurations.

Section 3.4 summarizes for undirected graphs the resulting approach to model specification,

and Section 6 gives the similar approach for directed graphs. Although the new statistics

are not a panacea, our experience up to now, illustrated by examples presented above, sug-

gest that the models defined by these statistics can be used to give a reasonable or good

representation of the transitivity and degree heterogeneity in observed social networks, also

for data sets in which modeling on the basis of the traditional specification, using only stars

and the number of transitive triplets or triangles, was not feasible. This is associated to

the fact that the new specification does not satisfy the Markov conditional independence

assumption of Frank and Strauss (1986), which often is too stringent, but satisfies only a

weaker type of partial conditional independence as discussed in Pattison and Robins (2002).

The degeneracy problems plaguing the traditional specification are much weaker with this

new specification. Obtaining maximum likelihood estimates under these specifications by

MCMC algorithms is relatively uncomplicated for many data sets. The freely available com-

puter programs SIENA (Snijders and Huisman, 2003) and ergm (Handcock et al., 2004) can
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be used for this purpose.

The statistics proposed here may look rather contrived at first reading, but they are nev-

ertheless a means to express that regions of incomplete clique-like structures will occur in

social networks, but that these cannot be expressed merely by noting that the network con-

tains many triangles. The k-triangle parameters should therefore be interpreted somewhat

differently from the traditional transitivity parameters based on only the triangle count;

e.g., in our second example we argued that the estimates give evidence for the emergence of

close-knit transitive structures that might be interpretable as self-organizing team formation.

Such a “higher order” interpretation is not really available in models containing only Markov

transitivity based completely on the prevalence of single triangles in the network.

Other network statistics might also be possible to achieve these modeling possibilities. We

do think that any statistics that achieve this will have arbitrary elements, or seem contrived

to some degree. This may have to do with the fact that network structure, as observed

at one given moment, in most cases is the result of many different forces and mechanisms

that operated in a period – often of long duration – before the observation of the network,

precluding a simple representation of the dependencies within the network.

Depending on the observed data set, it still is possible that degeneracy problems occur

even with these new specifications. More experience with these models, and the further

development of new models, is required before a satisfactory and well-balanced methodology

for the statistical modeling of networks will be attained. We think that especially the rep-

resentation of social settings (Pattison and Robins, 2002) will need more attention, and will

be possible by incorporating extra model elements. In some cases such extra model elements

will be individual and dyadic covariates, or interactions of covariates with the structures

proposed above, which is easy to carry out as it remains within the framework of the expo-

nential random graph model. In other cases the model would have to be compounded with

additional elements, e.g. latent structure models like the Euclidean models of Hoff, Raftery

and Handcock (2002), the ultrametric models of Schweinberger and Snijders (2003), or the

model-based clustering version of Tantrum, Handcock and Raftery (2004); in still other cases,

in the exponential model one could include other complicated statistics in addition to those

proposed here, along the lines of Pattison and Robins (2002).
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